A novel printed film consisting of multiwalled carbon nanotubes was fabricated on a polyethylene terephthalate substrate by means of a mass flexographic printing process. Potential applications of this film for electrochemical biosensing were examined through the oxidation of acetaminophen, dopamine, and uric acid in phosphate buffer (pH 7.0). The results demonstrate that the printed carbon nanotube film exhibits an enhanced electrochemical response toward these molecules. Dopamine and uric acid did not interfere with each other and, thus, their simultaneous determination may be performed. The results suggest the mass flexographic printing technique has potential application for the construction of low-cost, precise, and disposable multiwalled carbon nanotube films.