Early characterizations by morphological identification through light microscopy only revealed the presence of a few microbial lineages and the majority of microbial community at the Chae Son hot spring remains uncharacterized. Therefore, this study aims to examine thermophilic microbial communities at the Chae Son hot spring using next-generation sequencing, including investigating hot spring mineralogy. Results suggest that the Chae Son hot spring (49-75°C, pH = 6.5-7.0) precipitates digitate structures which comprise mainly silica, and that microbial permineralization is primarily through silicification. Alternating layers of mineralized microbial biofilms and silica were observed in digitate sinter cross-sections, contributing to the build-up of microstromatolites. Molecular results revealed that phylogenetically distinct members of photoautotrophic taxa, Chloroflexota and Cyanobacteriota, dominated spring microbial communities (63.19% relative abundance). Potential primary production processes were mainly through photoautotrophy, with minor lithoautotrophic activities (e.g., sulfur cycling and nitrogen cycling). Moreover, overall microbial community and Cyanobacteriota population alpha diversities significantly decreased with increased temperatures. However, no significant correlation was identified between Chloroflexota population diversity and temperatures. This study provides an update on the microbial community using a high-throughput next-generation sequencing technology, including the mineralogy of the Chae Son hot spring, Northern Thailand.
Read full abstract