Yeast infections have gained significant attention in the field of marine biology in recent years. Among the broad diversity of marine organisms affected by these infections, elasmobranchs (sharks and rays) have emerged as highly susceptible, due to climate change effects, such as increasing water temperatures and pollution, which can alter the composition and abundance of fungal communities. Additionally, injuries, or compromised immune systems resulting from pollution or disease may increase the likelihood of fungal infections in elasmobranchs. Studies are, however, still lacking for this taxonomic group. In this context, this study aimed to screen yeast species in cell cultures obtained from the brain of artisanally captured Pseudobatos horkelii, a cartilaginous fish that, although endangered, is highly captured and consumed worldwide. Fungi were isolated during an attempt to establish primary cultures of elasmobranch neural cells. Culture flasks were swabbed and investigated using morphological, phenotypic, and molecular techniques. Two isolates of the emerging opportunistic pathogen Trichosporon japonicum were identified, with high scores (1.80 and 1.85, respectively) by the MALDI-ToF technique. This is the first report of the basidiomycetous yeast T. japonicum in Pseudobatos horkelii in Brazil. This finding highlights the need for further research to determine the potential impact on elasmobranch health, ecology, as well as on commercial fisheries.
Read full abstract