BackgroundOlaparib is a PARP inhibitor inducing synthetic lethality in tumors with deficient homologous recombination (HRD) caused by BRCA1/2 mutations. The FDA has approved monotherapy for first-line platinum-sensitive, recurrent high-grade epithelial ovarian cancer. Combination therapy alongside DNA-damaging therapeutics is a promising solution to overcome the limited efficacy in patients with HRD. The present study was designed to develop topotecan- and olaparib-loaded liposomes (TLL and OLL) and assess the effectiveness of their combination in patient-derived ovarian cancer samples.MethodsWe used HEOC, four clear-cell tumors (EOC 1–4), malignant ascites, and an OCI-E1p endometrioid primary ovarian cancer cell line and performed NGS analysis of BRCA1/2 mutation status. Antiproliferative activity was determined with the MTT assay. The Chou-Talalay algorithm was used to investigate the in vitro pharmacodynamic interactions of TLLs and OLLs.ResultsThe OLL showed significantly higher efficacy in all ovarian cancer types with wild-type BRCA1/2 than a conventional formulation, suggesting potential for increased in vivo efficacy. The TLL revealed substantially higher toxicity to EOC 1, EOC 3, ascites and lower toxicity to HEOC than the standard formulation, suggesting better therapeutic efficacy and safety profile. The combination of studied compounds showed a higher reduction in cell viability than drugs used individually, demonstrating a synergistic antitumor effect at most of the selected concentrations.ConclusionsThe concentration-dependent response of different ovarian cancer cell types to combination therapy confirms the need for in vitro optimization to maximize drug cytotoxicity. The OLL and TLL combination is a promising formulation for further animal studies, especially for eliminating epithelial ovarian cancer with wild-type BRCA1/2.