Dental caries are among the most common oral and dental diseases affecting adults and children. To prevent caries, either the factors that cause caries should be reduced or the host resistance should be increased. Several compounds, such as bioglass, chitosan, and silver diamine fluoride (SDF), can enhance enamel remineralization. This study was conducted to investigate the effects of chitosan, bioglass, chitosan-bioglass, and SDF compounds on remineralizing primary enamel lesions. In this in vitro study, seventy-two primary canine teeth were collected. The teeth were exposed to a demineralization solution for 72 hours to create primary caries lesions. The primary Vickers microhardness test (VMT) was conducted to measure the initial values. The samples were randomly divided into six groups (n=12): Group 1: bioglass-chitosan solution; Group 2: chitosan; Group 3: bioglass solution; Group 4: SDF; Group 5: remineralization solution; Group 6: distilled water. The solutions of Groups 1, 2, and 3 were applied to the samples for 7 days, while the SDF solution was applied only once. The samples were immersed in an artificial saliva solution, which was refreshed daily. After the treatment, the final Vickers microhardness test (VMT) values were recorded. The data were analyzed statistically using a two-way ANOVA and Tukey's test (p< 0.05). The results indicated a statistically significant effect of remineralizing compounds on both pre-treatment and post-treatment microhardness (p< 0.0001). However, no significant difference in microhardness was observed between the groups studied (p= 0.225). All the compounds utilized in this study demonstrated a significant remineralizing effect on enamel lesions caused by primary caries in primary teeth. The chitosan-bioglass and bioglass groups exhibited the highest levels of remineralization, respectively. However, the comparison between the groups yielded insignificant results due to the dispersion of the samples. Therefore, further studies with larger sample sizes are recommended.
Read full abstract