Cancer is one of the primary causes of human disease and death, with high morbidity and mortality rates. Chemotherapy, one of the most common therapeutic techniques, functions through a variety of mechanisms, including the production of apoptosis and the prevention of tumor development. Herbal medicine has been the subject of numerous investigations due to its potential as a valuable source of innovative anti-cancer products that target multiple protein targets and cancer cell genomes. Curcumin, a polyphenol that is the major bioactive ingredient of turmeric, exhibits pharmacological and biological efficacy with antioxidant, anti-inflammatory, anticancer, cardioprotective, neuroprotective, and hypoglycemic activity in humans and animals. Recent research suggests that curcumin changes noncoding RNA (ncRNA), such as long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), in various types of cancers. Both circRNAs and lncRNAs are ncRNAs that can epigenetically modulate the expression of multiple genes via post-transcriptional regulation. In this study, we outline curcumin's activities in modulating signaling pathways and ncRNAs in various malignancies. We also described curcumin's regulatory function, which involves blocking carcinogenic lncRNAs and circRNAs while increasing tumor-suppressive ones. Furthermore, we intend to demonstrate how ncRNAs and signaling pathways interact with each other across regulatory boundaries to gain a better understanding of how curcumin fights cancer and create a framework for its potential future therapeutic uses.
Read full abstract