Lactobacillus strains exhibit preferable properties that make them attractive candidates for vaccine delivery systems because of their ability to regulate intestinal mucosal immunity in the body. To date, live Lactobacillus delivery vaccines reported for the defense against Eimeria tenella have been inducer-dependent systems whose applications are significantly limited due to their unattainable induction conditions in vivo. Here, a constitutive expression of Lactobacillus plantarum NC8 surface display system was constructed. Then, this system was used to prepare a live oral vaccine to constitutively express the E. tenella U6L5H2 (EtU6) protein on the NC8 surface and to evaluate its protective efficacy against E. tenella challenge in chickens. The results showed that the heterologous protein (EGFP or EtU6) was successfully expressed on the surface of L. plantarum NC8 without any inducer. The immunoprotection of EtU6 with constitutive expression in L. plantarum NC8 system (NC8/Pc-EtU6) was significantly stronger than that of EtU6 with induced expression of L. plantarum NC8 system (NC8/Pi-EtU6) (ACI: 168.28 vs. 152.74) as evidenced by increased body weight, decreased oocyst output and lesion scores. Furthermore, the constitutive system NC8/Pc-EtU6 produced higher levels of specific cecal SIgA, serum IgG, transcription of cytokines IFN-γ and IL-2, and lymphocyte proliferation than the induced system NC8/Pi-EtU6. These results indicate that, compared to the inducible system, the constitutive surface display system of L. plantarum has the advantages of continuously expressing antigens in vivo and stimulating the host immune system. It could be an ideal platform for vaccine expression. The live vector vaccine for coccidiosis constructed by this constitutive system greatly improves the application potential in chicken production and provides a novel platform for the prevention of coccidiosis in chickens.
Read full abstract