Bacterial infection and tissue hypoxia always prevent wound healing, so multifunctional platforms with antimicrobial and oxygen-supplying functions were developed. However, they face many difficulties such as complex preparation and low oxygen release. To address this challenge, a copper peroxide loaded gelatin/oxide dextran hydrogel (CGO) was prepared. Surprisingly, CGO hydrogel as a wound dressing not only had good biocompatibility, injectivity, and mechanical properties, but also exhibited mild photothermal properties, temperature responsiveness, and pH responsiveness. After being applied to wounds infected with bacteria, CGO hydrogel released copper peroxide under near-infrared laser irradiation, which produced copper ions and hydrogen peroxide, combined with PTT to kill bacteria. After the bacteria were cleared from the wound and the pH of the wound was changed to be acidic, CGO hydrogel released copper peroxide via pH response. Copper ions and oxygen produced from copper peroxide accelerated wound healing by promoting angiogenesis. The multi-responsive and multi-mode treatment platform provided a potential strategy for treating bacteria-infected wounds.