The analysis of plantar pressure distribution is essential in the field of biomedical and sports-related applications. In this study, a smart insole was developed for the measurement of plantar pressure distribution and the evaluation of body postures using optical fiber Bragg grating (FBG) sensing technology. Four FBG sensors characterized by four different center Bragg wavelengths, 1528 ± 0.3, 1532 ± 0.3, 1535 ± 0.3 and 1539 ± 0.3 nm, were located at the first metatarsus, third metatarsus, fifth metatarsus and heel position, respectively. The measurement sensitivity of all the FBG sensors was 0.000412 nm/kPa, approximately. Silica gel material of modulus = 10 MPa was selected to incorporate the FBG sensors. All FBG sensors were multiplexed together with one optical fiber cable. The performance and functional properties of all FBG-based pressure sensors were calibrated in the laboratory to evaluate plantar pressure distribution. A male subject was selected for performing four tasks, namely standing in an upright position, leaning forward, squat position and forward fold. During standing tests, plantar pressure observed at the heel position was around 57% higher than that at the first and third metatarsus, while the pressure of the fifth metatarsus position presents minimal pressure, which is only 37% that of the pressure of the heel position. When the subject performs leaning forward, the squat position and forward fold posture, the first and third metatarsi show maximum pressure, while the pressure decreases at the fifth metatarsus position. However, almost zero pressure is observed at the heel position when the subject changes the body postures of leaning forward, squat and forward fold posture. The extreme pressure of the forward fold posture was 1750 kPa acquired at the first metatarsus, which is 52% and 62% higher than those at the fifth and third metatarsi, respectively. Therefore, the smart insole successfully recorded both plantar pressure distribution and body posture changes regarding the wavelength values collected by the FBG sensors.