Through the current research on e-learning, it is found that the present e-learning system applied to the recommendation activities of learning resources has only two search methods: Top-N and keywords. These search methods cannot effectively recommend learning resources to learners. Therefore, the collaborative filtering recommendation technology is applied, in this paper, to the process of personalized recommendation of learning resources. We obtain user content and functional interest and predict the comprehensive interest of web and big data through an infinite deep neural network. Based on the collaborative knowledge graph and the collaborative filtering algorithm, the semantic information of teaching network resources is extracted from the collaborative knowledge graph. According to the principles of the nearest neighbor recommendation, the course attribute value preference matrix (APM) is obtained first. Next, the course-predicted values are sorted in descending order, and the top T courses with the highest predicted values are selected as the final recommended course set for the target learners. Each course has its own online classroom; the teacher will publish online class details ahead of time, and students can purchase online access to the classroom number and password. The experimental results show that the optimal number of clusters k is 9. Furthermore, for extremely sparse matrices, the collaborative filtering technique method is more suitable for clustering in the transformed low-dimensional space. The average recommendation satisfaction degree of collaborative filtering technology method is approximately 43.6%, which demonstrates high recommendation quality.
Read full abstract