Background and Objectives: Lung cancer is the leading cause of cancer-related deaths. Spread through air spaces (STAS) is an adverse prognostic factor that has become increasingly known in recent years. This study aims to investigate the impact of STAS presence on overall survival (OS) and disease-free survival (DFS) in patients with surgically resected stage IA-IIIA lung cancer and to identify clinicopathological features associated with STAS. Materials and Methods: This research involved 311 lung cancer surgery patients. The relationship between the presence of STAS in the patients' surgical pathology and OS and DFS values was examined. Clinicopathological features associated with the presence of STAS were determined. Results: There were 103 (33%) STAS-positive patients. Adenocarcinoma histological subtype, perineural invasion (PNI), and lymphovascular invasion (LVI) were significantly correlated with being STAS positive. STAS significantly predicted DFS and OS. One-year and five-year DFS rates were significantly lower in the STAS-positive group compared to the STAS-negative group (65% vs. 88%, 29% vs. 62%, respectively, p ≤ 0.001). Similarly, one-year and five-year OS rates were significantly lower in the STAS-positive group compared to the STAS-negative group (92% vs. 94%, 54% vs. 88%, respectively, p ≤ 0.001). In multivariate analysis, STAS was found to be an independent prognostic factor for both DFS and OS (HR: 3.2 (95%CI: 2.1-4.8) and 3.1 (95%CI: 1.7-5.5), p < 0.001 and <0.001, respectively). Conclusions: In our study, STAS was found to be an independent prognostic biomarker in operated stage IA-IIIA lung cancer patients. It may be a beneficial pathological biomarker in predicting the survival of patients and managing their treatments.
Read full abstract