The nutritive value of Sesbania aculeate harvested after 60 and 120 days of planting and subjected to two cutting regimen (15 or 30 cm length) was evaluated by determination of the crude protein (CP), crude fibre (CF), buffer soluble nitrogen (BS-N), buffer soluble non-protein nitrogen (BS-NPN) and cell wall constituents (neutral-detergent fibre; NDF, acid-detergent fibre; ADF and lignin). In vitro digestible organic matter (IVDOM), metabolizable energy (ME), microbial nitrogen (MN) and biomass (MBM) production were also estimated in the experimental plant samples after their incubation with rumen fluid for 96 h in the absence or presence of polyethylene glycol (PEG, 6000) at a ratio of 2:1 PEG:substrate. Fermentation characteristics (initial gas production; a, gas production during incubation; b, potential gas production; a+b, fractional rate of gas production; c) were assessed using an in vitro incubation technique with rumen fluid. There was a significant (P < 0.05) effect of harvest time on all studied nutritive parameters and fermentation characteristics. The early harvest plant samples (after 60 days of planting) gave significantly higher values of IVOMD, ME, CP, BS-N, BS-NPN, MN, MBM and fractional rate of gas production and lower values of CF and cell wall constituents than the late harvest. Crude protein, BS-N, BS-NBN, IVOMD and ME were negatively correlated with CF and cell wall constituents. Metabolisable energy and IVOMD were positively correlated with CP, BS-N and BS-NPN. Cutting treatments significantly affected the CP, CF, BS-N, BS-NPN, NDF, ADF, IVDOM, ME, potential gas production and b values. There was no significant (P > 0.05) effect of added PEG on IVDOM, ME, MN, MBM, fermentation characteristics and gas production over 96 h. The greatest proportion of gas production occurred between 6 and 24 h of incubation. The fractional rate of gas production from 100 mg substrate was higher (0.046 mL/h) for the plant samples harvested at early stage and cut at 30 cm length than harvested at late stage (0.018 mL/h). C values were negatively correlated with lignin concentrations. The amount of MN and MBM produced from 100 mg substrate amounted to 1.29 mg and 14.95 mg at early maturity stage and 0.68 mg and 7.89 mg at late stage, respectively. Microbial nitrogen and MBM production were negatively correlated with CF, cell wall constituents and gas production but positively correlated with CP, BS-N and BS-NPN.