Prevention of microbial adhesion and detachment of adhering microorganisms from surfaces is important in many environmental, industrial, and medical applications. Fluid shear is an obvious parameter for stimulating microbial detachment from surfaces, but recently it has been pointed out that a passing air-liquid interface also has potential in stimulating microbial detachment. In the present study, the ability of microbubbles to stimulate detachment of bacterial strains from a glass surface is compared with the effects of fluid flow. Adhesion and detachment of Actinomyces naeslundii T14V-J1, Streptococcus oralis J22, and their coadhering aggregates were studied on glass, mounted in a parallel plate flow chamber. High fluid wall shear rates (11,000 to 16,000 s(-1)) were established in a laminar flow regime in the absence and presence of microbubbles. Wall shear rates stimulated detachment ranging from 70% to 30% for S. oralis and A. naeslundii, respectively. Coadhering aggregates were detached up to 54%. The presence of microbubbles in the flow increased the detachment of A. naeslundii within 2 min of flow from 40% in the absence of microbubbles to 98%, while detachment of neither S. oralis nor coadhering aggregates was affected by the presence of microbubbles. In summary, extremely high fluid flows can be effective in stimulating microbial detachment, depending on the strain involved. The addition of microbubbles to the flow allows the detachment of tenaciously adhering bacteria not detached by flow alone, but not of adhering coaggregates.