In bio-calcification, microbes precipitate calcium carbonate (CaCO3), forming versatile solid substances that promotes eco-friendly materials and reduce carbon emissions. Marine bacteria can generate bio-cements to strengthen dikes and combat coastal erosion. However, the role of marine bacteria in generating bio-cements for enhancing coastal structures and combating erosion is not fully understood. This study investigates the potential of CaCO₃ precipitating bacteria isolated from methane hydrate-bearing marine sediments. Five calcifying marine bacteria were isolated using Christensen's urea agar from marine sediments collected from Gawadar coastal, Pakistan. Bacterial strains induced CaCO3 precipitation producing urease enzymes. Strains were identified as Pseudomonas putida, Bacillus altitudinis, Vibrio sp., Bacillus sp., and Vibrio plantisponsor. Energy-dispersive X-ray spectroscopy, scanning electron microscopy, and X-ray diffraction were applied for the identification and differentiation of calcite and vaterite precipitates. The growth of isolates and precipitation potential were observed optimum at 5% NaCl and pH 9.5-11. Bacillus altitudinis (ST4SD3) and Bacillus sp. (ST4SD1) produced more soluble Ca2+ (8532.53 mg/l and 7581.98 mg/l) as compare to other isolates at higher pH 10 and pH 11, favorable for CaCO3 precipitation. It is concluded that marine ureolytic bacteria possess significant potential for bio-cementation, which can stabilize methane hydrate-bearing sediments, improve soil properties, protect coastal regions from erosion, and crucial in the methane cycle, a greenhouse gas. We recommend further exploration of such bacteria's applications in marine construction and sediment stabilization to enhance the robustness and longevity of coastal infrastructures. Furthermore, such bacteria could also be beneficial in extracting gas from unconsolidated methane hydrates containing sediments.
Read full abstract