The coordination chemistry of the title ligands with Mo metal centers was investigated. Thus, the synthesis and characterization (NMR, X-ray diffraction) of four mononuclear formally Mo(6+) complexes of (Z)-1-R-2-(4′,4′-dimethyl-2′-oxazolin-2′-yl)-eth-1-en-1-ates (L: R = –Ph, –Ph-p-NO2, –Ph-p-OMe and –t-Bu), derived from the part enols (LH), is described. The resulting air-stable MoO2L2 complexes (1–4) exist, as shown by single-crystal X-ray diffraction experiments, in the cis-dioxido-trans(N)-κ2-N,O-L conformation in the solid state for all four examples. This situation was further probed using semi-empirical PM6(tm) calculations. Complexes 1–4 represent the first Mo complexes of this ligand class and, indeed, of Group 6 metals in general. Structural and spectroscopic comparisons were made between these and related Mo(6+) compounds. Complex 1 (R = –Ph) was studied for its ability to selectively catalyze the production of poly-norbornene from the monomer in the presence of MAO. This, unfortunately, only resulted in the synthesis of insoluble, presumably highly cross-linked, polymeric and/or oligomeric materials. However, complexes 1–4 were demonstrated to be highly effective for catalyzing benzoin to benzil conversion using DMSO as the O-transfer agent. This catalysis work is likewise put into perspective with respect to analogous Mo(6+) complexes.
Read full abstract