At shock Mach numbers [Formula: see text] in pure krypton, at initial pressures p0 ~ 5 Torr, and final electron number densities ne ~ 1017 cm−3, the translational shock front in a 10 cm × 18 cm hypervelocity shock tube develops sinusoidal instabilities which affect the entire shock structure including the ionization relaxation region, the electron-cascade front and the final quasi-equilibrium state. By adding a small amount of hydrogen (~0.5% of the initial pressure), the entire flow is stabilized. However, the relaxation length for ionization is drastically reduced to about one half of its pure-gas value. Unlike argon the stability appears to diminish with the addition of hydrogen beyond about 0.5%. Using the familiar two-step collisional model coupled with radiation-energy loss and the appropriate chemical reactions, it was possible from dual-wavelength interferometric measurements to deduce a more precise value for the krypton–krypton collision excitation cross-section, S*Kr–Kr = 1.2 × 10−19 cm2/eV, with or without the presence of hydrogen impurities. The reason for the success of hydrogen, and not other gases, in bringing about stabilized Shock waves in argon and krypton is not clear. It was also found that the electron-cascade front approached closely to the translational-shock front with increasing proximity to the shock-tube wall. This effect appears independent of the wall material and is not affected by the evolution of adsorbed water vapour from the walls or by water added deliberately to the test gas. The sinusoidal instabilities investigated here may offer some important clues to the abatement of instabilities that lead to detonations and explosions.
Read full abstract