Sensor networks are one of the most relevant and promising technologies for wide application in various spheres of human life. Relatively inexpensive components, namely, sensor nodes are combined into one network. Due to the use of a significant number of nodes, in addition to the overall impact on functionality, this also leads to a decrease in the reliability of the network. Wireless connectivity has a number of limitations when it comes to the direct connection to the public communications network or the next-generation networks with optical components. For example, the relatively small distance to send information between constituent components. It follows next idea -sooner or later there will be the denial of nodes, which will lead to the isolation of other sensors. To avoid this, or at least to ensure the network connectivity during a failover, more nodes on a separate site need to be used. Also, due to the presence of connectivity between touch nodes, there are a number of general features that should be taken into account when designing such a network and deploying it in real-world conditions. One of these tasks is to ensure the accuracy of packets of information’s transfer between the sensor nodes, as violations of its integrity, quality, reliability and safety can lead to serious consequences. Due to insignificant volumes of memory, sensor nodes are not able to capture data about all nodes, their physical addresses, metrics for the fastest transmission of information packets. In view of this, the number of requests for the same node may exceed the critical rate at a certain time. However, there may also be a situation where a node that has not been earlier tested can be connected to the network. In this case, the question of the authenticity of the data that will circulate in the network from a similar, hidden node to others is sharply raised. Therefore, it is necessary to study the existing and the introduction of new algorithms for the transmission of information in the presence of hidden nodes in wireless sensory networks at the present stage of development.