A series of experiments were conducted to investigate the melting of ice adjacent to a water-immiscible liquid layer (n-dodecane) exposed to radiation from above. The experimental setup consisted of a borosilicate container containing an ice wall and a layer of n-dodecane heated from above. In addition to tracking the movement of the melt front, Particle Image Velocimetry (PIV) and Background Oriented Schlieren (BOS) measurements were conducted on the liquid-phase. Two distinct melting regimes were found to dominate the melting process. First was the uniform melting across the contact area with the immiscible liquid layer for low radiation levels (∼1 kW/m2). Second was the lateral intrusion regime, where a depression near free surface of the liquid forms in ice and grows laterally for radiation level greater than ∼ 1 kW/m2. The ice surface remained flat and smooth in uniform melting regime, whereas in the lateral intrusion regime a series of rivulets were formed that carved valleys on the ice. PIV measurements showed a surface flow toward the ice for all heat flux levels caused by surface-tension forces. Increase of the heat flux levels caused a transition to multi-roll structure in the flow field. This multi-roll structure, which is accompanied by a recirculation zone near the ice, increased heat transfer near the surface of the liquid causing lateral intrusion regime. BOS measurements indicated presence of density gradients below the free surface of n-dodecane and in regions near the ice that are caused by local small-scale temperature gradients. The current experiments were conducted to explore the melting dynamics and to shed light on the processes that influence the ice melting. Implications of such mechanisms in a real-life scenario, i.e. oil spill in ice-infested waters, needs to be explored further by using more liquids and improved accuracy of the diagnostic techniques.
Read full abstract