In this study, population analysis (PA) of methicillin-resistant Staphylococcus aureus (MRSA), before and after long-duration daptomycin (DAP) treatment, was used to detect subpopulations with different susceptibilities to DAP and to verify the changes in the number of resistant cells. Furthermore, we aimed to characterize the bacteriology of the variants present in the non-susceptible cell subpopulation. A DAP non-susceptible (NS) MRSA phenotype (D2) that emerged from a DAP- susceptible MRSA phenotype (D1) during treatment of an open wound, was used for testing. We performed bacteriological and genetic analyses of cryptic DAP-NS MRSA variants detected by PA to study the variants present in the resistant cell subpopulation. PA results suggest that MRSA adapted to survival in the presence of DAP are selected leading to reduced susceptibility. Within the cell population growing in media containing 2.0mg/L of DAP, three variants with different pigment production and colony size were detected. Variant 3 was an orange colony due to enhanced production of staphyloxanthin. Our results revealed that the DAP minimum inhibitory concentration (MIC) value increased two-fold (4mg/L) in variant 3, in which pigment production was most enhanced, compared to the parental strain D2. In conclusion, our results indicate that long-duration DAP treatment can lead to the emergence and increased proportion of DAP-NS subpopulations. Furthermore, slow-growing variants that can be detected only under antimicrobial selective pressure are present among DAP-NS cells, suggesting that these variants may also contribute to the development of DAP resistance.
Read full abstract