The wound healing process was often accompanied by bacterial infection and inflammation. The combination of electrically conductive nanomaterials and wound dressings could accelerate cell proliferation through endogenous electrical signaling, effectively promoting wound healing. In this study, polypyrrole was modified with dopamine hydrochloride by an in situ polymerization to form dopamine-polypyrrole (DA-Ppy) conductive nanofibers which successfully enhanced the water dispersibility and biocompatibility of polypyrrole. The DA-Ppy nanofibers were dispersed in an aqueous solution for >48 h and still maintained good stability. In addition, the DA-Ppy nanofibers showed good photothermal properties, and the temperature could reach 59.7 °C by 1.5 W/cm2 near-infrared light irradiation (NIR) for 10 min. DA-Ppy conductive nanofibres could be well dispersed in 3,4-dihydroxyphenylpropionic acid modified chitosan-carboxymethylated β-cyclodextrin modified gelatin (CG) hydrogel due to the presence of DA, which endowed CG/DA-Ppy hydrogel with good adhesion properties, and the hydrogel adhered to the pigskin would not be dislodged by washing with running water. Under NIR, the CG/DA-Ppy hydrogel showed significant antimicrobial properties. Moreover, the CG/DA-Ppy hydrogel had excellent biocompatibility. In addition, CG/DA-Ppy hydrogel was effective in scavenging ROS, inducing macrophage polarization towards the M2 phenotype, and modulating the level of wound inflammation in vitro. Finally, it was confirmed in rat-infected wounds that the tissue regeneration effect and collagen deposition in the CG/DA-Ppy + NIR group were significantly better than the other groups in the repair of infected wounds, indicating better repair of infected wounds. The results suggested that the photothermal, antioxidant DA-Ppy conductive nanofiber had great potential for application in infected wound healing.
Read full abstract