Aerosol acidity significantly influences heterogeneous chemical reactions and human health. Additionally, acidity may play a role in cloud formation by modifying the ice nucleation properties of inorganic and organic aerosols. In this work, we combined our well-established ice nucleation technique with Raman microspectroscopy to study ice nucleation in representative inorganic and organic aerosols across a range of pH conditions (pH -0.1 to 5.5). Homogeneous nucleation was observed in systems containing ammonium sulfate, sulfuric acid, and sucrose. In contrast, droplets containing ammonium sulfate mixed with diethyl sebacate, poly(ethylene glycol) 400, and 1,2,6-hexanetriol were found to undergo liquid-liquid phase separation, exhibiting core-shell morphologies with observed initiation of heterogeneous freezing in the cores. Our experimental findings demonstrate that an increased acidity reduces the ice nucleation ability of droplets. Changes in the ratio of bisulfate to sulfate coincided with shifts in ice nucleation temperatures, suggesting that the presence of bisulfate may decrease the ice nucleation efficiency. We also report on how the morphology and viscosity impact ice nucleation properties. This study aims to enhance our fundamental understanding of acidity's effect on ice nucleation ability, providing context for the role of acidity in atmospheric ice cloud formation.
Read full abstract