Electrodeposition will prove to be a promising candidate for the preparation of magnetic nanostructures. Multilayered Co/Pt nanostructures grown on a Cu(111) single-crystal substrate by electrodeposition under potential control exhibit a remanent perpendicular magnetization and a large coercivity, which depend on the deposition overpotential and hence the multilayer growth mechanism. Giant magnetoresistance and oscillatory antiferromagnetic interlayer coupling have been observed in a face-centered cubic (fcc) (111) textured Co/Cu multilayered nanostructure. Moreover, a large saturation magnetoresistance of more than 20% has been achieved at room temperature for a heterogeneous Co-Cu alloy, which consists of ultrafine fcc Co-rich clusters in a nonmagnetic Cu matrix.
Read full abstract