Prenatal stress (PS), in both humans and animals, presents a potential risk to the mother and her fetus throughout gestation. PS is always associated with physiological changes that alter embryonic development and predispose the individual to lifelong health problems, including susceptibility to mental illness. This study aims to identify the harmful effects of prenatal restraint stress (PRS), commonly employed to induce stress painlessly and without any lasting debilitation during gestation. This stress is applied to pregnant Swiss albino mice from E7.5 to delivery for three hours daily. Our results show that PS affects dams' weight gain during the gestational period; moreover, the PS dams prefer passive nursing, exhibit a lower percentage of licking and grooming, and impair other maternal behaviors, including nesting and pup retrieval. Concerning the offspring, this stress induces neurobehavioral impairments, including a significant increase in the time of recovery of the young stressed pups in the surface righting reflex, the latency to avoid the cliff in the cliff avoidance test, longer latencies to accomplish the task in negative geotaxis, and a lower score in swimming development. These alterations were accompanied by increased Malondialdehyde activity (MDA) at PND17 and 21 and downregulation of AchE activity in the whole brain of pups on postnatal days 7 and 9. These findings demonstrated that PS causes deleterious neurodevelopmental impairments that can alter various behaviors later in life.
Read full abstract