BackgroundManganese (Mn) is essential to healthy neurodevelopment, but both Mn deficiency and over-exposure have been linked to prefrontal cortex (PFC) impairments, the brain region that regulates cognitive and neurobehavioral processes responsible for spatial memory, learning, motivation, and time perception. These processes facilitated by attention, inhibitory control, working memory, and cognitive flexibility are often sexually dimorphic and complex, driven by multiple interconnected neurologic and cognitive domains. ObjectiveWe investigated the role of child sex as an effect modifier of the association between prenatal Mn exposure and performance in an operant testing battery (OTB) that assessed multiple cognitive and behavioral functional domains. MethodsChildren (N = 575) aged 6–8 years completed five OTB tasks. Blood and urinary Mn measurements were collected from mothers in the 2nd and 3rd trimesters. Multiple regression models estimated the association between Mn biomarkers at each trimester with OTB performance while adjusting for socio-demographic covariates. Covariate-adjusted weighted quantile sum (WQS) regression models were used to estimate the association of a Mn multi-media biomarker (MMB) mixture with OTB performance. Interaction terms were used to estimate modification effect by child sex. ResultsHigher blood Mn exposure was associated with better response rates (more motivation) on the progressive ratio task and higher overall accuracy on the delayed matching-to-sample task. In the WQS models, the MMB mixture was associated with better response rates (more motivation) on the progressive ratio task. Additionally, for the linear and WQS models, we observed a modification effect by child sex in the progressive ratio and delayed matching-to-sample tasks. Higher prenatal Mn biomarker levels were associated with improved task performance for girls and reduced performance in boys. ConclusionHigher prenatal blood Mn concentrations and the MMB mixture predicted improved performance on two of five operant tasks. Higher prenatal Mn concentrations regulated executive functions in children in a sexually dimorphic manner. Higher prenatal Mn exposure is associated with improved performance on spatial memory and motivation tasks in girls, suggesting that Mn's nutritional role is sexually dimorphic, and should be considered when making dietary and/or environmental intervention recommendations.
Read full abstract