At Abu Hureyra, a well-studied archeological site in Syria, the onset boundary of the Younger Dryas climatic episode ~12,800 years ago has previously been proposed to contain evidence supporting a near-surface cosmic airburst impact that generated temperatures >2000°C. Here, we present a wide range of potential impact-related proxies representing the catastrophic effects of this cosmic impact that destroyed the village. These proxies include nanodiamonds (cubic diamonds,n-diamonds,i-carbon, and lonsdaleite-like crystals); silica-rich and iron-rich micro-spherules; and melted chromite, quartz, and zircon grains. Another proxy, meltglass, at a concentration of 1.6 wt% of bulk sediment, appears to have formed from terrestrial sediments and was found to partially coat toolmaking debitage, bones, and clay building plaster, suggesting that village life was adversely affected. Abundant meltglass fragments examined display remarkably detailed imprints of plant structures, including those of reeds. The nanodiamonds are proposed to have formed under anoxic conditions from the incineration of plant materials during high-temperature, impact-related fires, while geochemical evidence indicates that the micro-spherules formed from the melting of terrestrial sediments. Broad archeological and geochemical evidence supports the hypothesis that Abu Hureyra is the oldest known archeological site catastrophically destroyed by cosmic impact, thus revealing the potential dangers of such events.