Research on water abstraction techniques in sandy rivers is crucial for addressing water scarcity issues in northern China. This study introduces an artificial percolation water intake riverbed structural model designed to prevent sand intake and facilitate the extraction of clear water from sandy rivers, the main function of which is to artificially construct a helical flow field to realize the separation of water and sand and, at the same time, percolate the water. In this paper, we use a numerical orthogonal test method to study the influence of structural parameters and their combinations on water extraction by percolation, and the preferred combination of structural parameters. The main conclusions of this paper are as follows: Under the condition of certain structural parameters of the artificial riverbed, the single-width flow rate has an important effect on the mean circumferential flow rate of the vortex tube and the vortex tube seepage volume. The effect of different structural parameters on the mean circumferential flow rate of the vortex tube and the vortex tube seepage varies in magnitude. The longitudinal slope of artificial riverbed i had the greatest and most significant effect on the mean circumferential flow rate of the vortex tube, and each structural parameter had some effect on the vortex tube seepage Q but not to a significant level. When the sand content of the water flow is 15 kg/m3 and the maximum sand grain size of the suspended mass is 2 mm, the optimal structural parameter combinations of the artificial riverbed under different working conditions are as follows: Combination 20 is the optimal structural parameter combination for q = 0.3 m2/s; Combination 24 is the optimal structural parameter combination for q = 0.6 m2/s; and Combination 24 is the optimal structural parameter combination for q = 0.9 m2/s. The present study is of great significance for understanding the influence of each structural parameter and its combination on the effect of the water intake and sand discharge of an artificial percolation intake riverbed, and for optimizing the combination of the structural parameters of an artificial percolation intake riverbed.