Peste des petits ruminants virus (PPRV) is an infectious pathogen; causing highly contagious, acute febrile, and economically important disease of small ruminants. The virus is known to have intrinsic ability to adapt new hosts and to cross the species barrier. The incidence of PPR has already been reported in unusual host species such as camels, bovines, and wild animals from spill-over or natural infection. Still, there are elementary gaps in our knowledge of the extent of susceptibility of camel to PPRV and the adaptability of PPRV to camel. The present study delineates the potential role of preferential codon usage patterns responsible for adaptation, host immune evasion, and transmission of PPRV to unusual hosts like old world camel species namely, dromedary and bactrian camel. The results indicate codon usage of the PPRV genome is functioned by an interplay of mutational pressure and natural selection to exhort the adaptation and fitness of PPRV in probable hosts. The indices of natural selection like the relative codon deoptimization index (RCDI) and codon adaptation index (CAI) predict the ability of PPRV to adapt and evolve in camel species. The analysis also depicts the potential role of the CpG depletion mechanism employed by PPRV to evade host adaptive immune response. The report emphasizes the need for a comprehensive national PPR surveillance plan in unusual hosts like camels for the successful implementation of the PPR Global Eradication Programme (PPR- GEP).
Read full abstract