Objectives: Necroptosis, a form of programmed cell death, can occur in the placenta of patients with preeclampsia (PE). Hydrogen sulfide (H2S) can inhibit necroptosis of human umbilical vein endothelial cells under the high glucose-induced injury. Whether H2S can protect trophoblasts against necroptosis underlying PE has not been elucidated. This study aimed to explore the protective role of H2S in trophoblast cells against necroptosis underlying PE. Design: This is an in vitro experimental study. Participants: A total of 10 pregnant women with severe PE and 10 matched control normotensive pregnant women were included. The placenta tissues were extracted from participators. The human JEG-3 trophoblasts were commercially available. Methods: The expression and localization of necrotic proteins were assayed in human placenta samples, and the effect of necrotic cell death on the proliferation and apoptosis of human JEG-3 trophoblasts was evaluated. The component expressions of inflammatory cytokine and p38MAPK signaling pathway were measured in samples pretreated with or without NaHS (H2S donor) and SB203580 (p38 inhibitor). Results: RIPA1, RIPA3, and p-p38 levels were significantly higher in PE placental tissue, whereas cystathionine β-synthase expression was decreased. In JEG-3 trophoblasts, necroptosis increased apoptotic cell numbers, suppressed cell proliferation, increased inflammatory cytokine expression, and increased p38MAPK activation, which can be prevented by NaHS. Limitations: In the present study, we did not provide sufficient evidence that necroptosis was a part of the pathogenesis of PE. Conclusions: We proposed the putative role of necroptosis in early-onset PE, reflected by the blockage of caspase-8/3 and increased expression of RIPA1 and RIPA3 in PE placenta tissues. Furthermore, we demonstrated that exogenous H2S protected cytotrophoblasts against ceramide-induced necroptosis via the p38MAPK pathway.
Read full abstract