This study evaluated associations of heat shock proteins (HSP) and an oxidative stress protein, protein deglycase (DJ1), with beef quality and tenderness. Samples from the longissimus thoracis (N = 99) were collected pre-rigor (day 0) and after 14-d aging. Warner-Bratzler shear force (WBSF), myofibrillar fragmentation index (MFI), and a trained sensory panel were used to determine meat quality. Protein abundance of DJ1 and 2 HSP—HSPβ1 and HSPA—were assessed. Regression analyses demonstrated that DJ1 abundance after 14 d of aging is a predictor of WBSF (P < 0.001), MFI (P = 0.02), and sensory panel tenderness (P < 0.001). Abundance of HSPβ1 after 14 d of aging is also a predictor of MFI (P = 0.03). Additionally, abundance of both HSPβ1 and DJ1 pre-rigor are predictors of juiciness (P < 0.05). Abundance of HSPβ1 pre-rigor was correlated with WBSF (R = 0.67), sensory panel tenderness (R = −0.44), juiciness (R = −0.30), and umami (R = −0.20). Abundance of DJ1 pre-rigor was also correlated with WBSF (R = 0.72), sensory panel tenderness (R = −0.44), juiciness (R = − 0.24), and umami (R = −0.31). After 14-d aging, HSP β 1 abundance was cor- related with WBSF (R = 0.66), sensory panel tenderness (R = −0.34), juiciness (R = −0.34), umami (R = −0.33), and brown/ roasted (R = −0.30). Abundance of DJ1 after 14-d aging was also correlated with WBSF (R = 0.68), sensory panel tenderness (R = −0.41), juiciness (R = −0.21), and umami (R = −0.28). These results demonstrate that abundance of HSPβ1 and DJ1 both pre-rigor and after 14 d of aging are correlated with meat tenderness and end-product quality as assessed by a trained sensory panel. Regression analyses further reveal that abundance of DJ1 and HSPβ1 after 14 d of aging is causative in development of beef tenderness and juiciness, respectively. Taken together, these results suggest that abundance of DJ1 is a predictor of tenderness, whereas abundance of HSPβ1 is related to meat quality but cannot be used to predict tenderness.