Building energy systems with circulation loops have high circulation heat loss, resulting in low energy utilization efficiency. It requires energy-saving operation strategies to eliminate unnecessary circulation heat loss, especially in domestic hot water (DHW) systems. The objective of this paper is to improve the energy efficiency of building energy systems and reduce operational costs. This is done by dynamically adjusting the target temperature set point. This is the first study to present a computationally inexpensive method for accurately predicting the temperature drop of hot water in environments with changing ambient temperatures. The outcome indicates that energy usage efficiency could be increased by approximately 16.42 %, while operational costs could be lowered by approximately 24.76 % for over 90 days in the fall. The proposed model is an implementable approach for predicting temperature drop and optimal operational scheduling as part of robust and reliable building energy management in real-world scenarios.
Read full abstract