The quality of planted forest crops depends significantly on the qualities of the planting stock. Numerous studies have been carried out to find clear seedling quality criteria and work out methods for their quantitative assessment to optimize the cultivation regime. Indicators of planting stock that are available for measurement under nursery conditions are needed to predict the success of forest crop establishment. This paper provides a review of the studies that applied different morphological criteria to evaluate coniferous planting stock quality and different determination methods. The suitability of planting stock quality indicators is determined by the effectiveness of predicting the outplanting survival rate (%) and growth. The key morphometric attributes of planting stock are the linear dimensions and biomass of whole seedlings and their individual organs: root collar diameter (RCD), seedling height (SH), dry mass of needles (NDM), stem (SBDM), roots (RDM), shoot/aboveground part of the seedling (SDM), seedling’s total dry matter (TDM), number of needles (NN). Effective indicators of seedling quality are morphometric indicators of roots: total length (TRL), volume (TRV), dry mass (RDM), number of first- (FOLR N), second- (SOLR N), and third-order (TOLR N) lateral roots, root surface area (TRS). TRL is a fairly reliable indicator of absorbent surface area. To minimize errors in the use of one or two traits, integrated seedling quality indices based on two or more indices have been developed. Widely used indices include: SQ = SH(cm)/RCD(mm); SDM/RDM ratio; Dickson quality index DQI = TDM/ ((SH / RCD) + (SDM / RDM)). RCD was the most suitable parameter to indicate seedling quality for many species due to its higher correlation level with the Dickson quality index. The SH index proved to be an effective indicator for analysis only when used together with RCD. When studying the formation of frost resistance, a number of morphological parameters are used: initiation of needle primordia, size of primordial shoots, cell volume, mitotic index (MI) of terminal primordia. Despite advances in testing planting stock quality and predicting field performance, not a single test is universally applicable for all woody plant species and environmental conditions. According to the target seedling concept, the application of morphometric criteria for assessing seedling quality in forest nurseries is a prerequisite for predicting outplanting success and maximizing the predictability of the outcomes of highproductivity forest crop planting. For citation: Robonen E.V., Chernobrovkina N.P., Egorova A.V., Zaitseva M.I., Nelaeva K.G. Morphometric Criteria for Assessing the Containerized Conifers Seedlings Quality. Lesnoy Zhurnal = Russian Forestry Journal, 2023, no. 5, pp. 42–57. (In Russ.). https://doi.org/10.37482/0536-1036-2023-5-42-57
Read full abstract