Background: Radio-tracking is increasingly used to assess key characteristics of population dynamics. Since in many species re-encounter rates are frequently below 1.0 and vary with time and/or life-history stages, known-fate approaches to analyses may not apply. Cormack-Jolly-Seber (CJS) models estimate apparent survival on the basis of individual encounter histories. These models allow for complex re-encounter models and constitute an ideal tool to estimate apparent survival where re-encounter rates vary. However, the implications of radio-tag characteristics and sample size on the precision of survival estimates and the potential to determine temporal variation in survival have rarely been investigated. Here we analyze radio-tracking data from juvenile barn swallows (Hirundo rustica )t hat were instrumented with four types of transmitters similar in mass but differing in radiated power (n=560, 132 broods). Results: For all transmitter types re-encounter probabilities varied between 0.2 and 0.75, depending on radiated power and bird age. Higher-power transmitters significantly improved the re-encounter rates and thus, the precision of survival estimates. Apparent survival varied with age, with a minimum around the break-up of families. Later on survival increased again and approached the rate of adults. Analyses of random sub-samples revealed that sample size strongly affected the variance in survival estimates, and thus the power in discerning temporal or between-group variation in survival. Small samples substantially underestimated the survival to independence. In small subsamples the standard errors of estimates were particularly large in later re-encounters. Consequently, model selection results of different survival models on the basis of small random sub-samples were highly inconsistent. Conclusions: Investigating population processes requires modeling of time- and cohort-dependent survival rates, often for short time periods. We show that CJS estimates of apparent survival from small samples revealed rough patterns in barn swallow survival with samples of c. 50 individuals. However, small samples underestimated the number of survivors reaching independence. Inference on underlying mechanistic models based on Akaike’s Information Criterion (AIC) model selection was unreliable with sample sizes below 200 individuals. As samples are often limited for practical reasons, maximizing re-encounter rates by optimal choice of telemetry hardware and field logistics is a way to increase the precision of survival estimates.
Read full abstract