Abstract —We have first determined the petrogeochemical, Sm–Nd isotope, and U–Th–Pb geochronological (detrital-zircon LA-ICP-MS) characteristics of terrigenous rocks from a thick sequence in the south of the Sangilen block, which is part of the Central Asian Orogenic Belt (CAOB). The rocks are heterogeneous in facies composition: From west to east, there is a transition from graywacke sandstones with an admixture of pyroclastics to much more silicic lithoid arenites. Geochronological data on detrital zircons from the predominant graywacke sandstones mark the following intervals of concordant ages (Ma): 787–907, 1870–2236, 2613–2725, and 2900–2980. With regard to the oldest determined age (early Cambrian, 520 Ma) of the igneous rocks intruding these sandstones, the possible period of accumulation of terrigenous sequences in the south of the Sangilen block is estimated at 790–520 Ma. The obtained geochemical, Sm–Nd isotope, and U–Th–Pb geochronological data point to Neoproterozoic and early Precambrian island arc and continent-marginal complexes as probable provenances for the terrigenous deposits of the “southern band”. The relative proportions of rocks of these complexes in the deposits changed with distance from the sedimentary basin (from west to east, in modern coordinates): The portion of early Neoproterozoic juvenile rocks decreased, and the portion of early Precambrian metamorphic complexes increased. The Paleoproterozoic and Mezoarchean detrital zircons found in the terrigenous rocks of the Sangilen block could not originate from any known Precambrian complexes of the Tuva–Mongolian microcontinent. This gives grounds to regard other craton blocks of the CAOB as their sources.
Read full abstract