Amyloid-peptide (Aβ) monomeric forms (ABM) occurring in presymptomatic Alzheimer's disease (AD) brain are thought to be devoid of neurotoxicity while the transition/aggregation of ABM into oligomers is determinant for Aβ-induced toxicity since Aβ is predominantly monomeric up to 3µM and aggregates over this concentration. However, recent imaging and/or histopathological investigations revealed alterations of myelin in prodromal AD brain in absence of aggregated Aβ oligomers, suggesting that ABM may induce toxicity in myelin-producing cells in early AD-stages. To check this hypothesis, here we studied ABM effects on the viability of the Human oligodendrocyte cell line (HOG), a reliable oligodendrocyte model producing myelin proteins. Furthermore, to mimic closely interactions between oligodendrocytes and other glial cells regulating myelination, we investigated also ABM effects on mouse brain primary mixed-glial cell cultures. Various methods were combined to show that ABM concentrations (600nM-1µM), extremely lower than 3µM, significantly decreased HOG cell and mouse brain primary mixed-glial cell survival. Interestingly, flow-cytometry studies using specific cell-type markers demonstrated that oligodendrocytes represent the most vulnerable glial cell population affected by ABM toxicity. Our work also shows that the neurosteroid 3α-O-allyl-allopregnanolone BR351 (250 and 500nM) efficiently prevented ABM-induced HOG and brain primary glial cell toxicity. Bicuculline (50-100nM), the GABA-A-receptor antagonist, was unable to block/reduce BR351 effect against ABM-induced HOG and primary glial cell toxicity, suggesting that BR351-evoked neuroprotection of these cells may not depend on GABA-A-receptor allosterically modulated by neurosteroids. Altogether, our results suggest that further exploration of BR351 therapeutic potential may offer interesting perspectives to develop effective neuroprotective strategies.
Read full abstract