Single-molecule Förster Resonance Energy Transfer (smFRET) is a powerful biophysical technique that utilizes the distance-dependent energy transfer between donor and acceptor dyes linked to individual molecules, providing insights into molecular conformational changes and interactions at the single-molecule level. Prior investigations leveraged smFRET to study the conformational dynamics of single truncated Ubc4 pre-mRNA molecules during splicing, yet these efforts did not prioritize structural modeling. In this study, we develop an smFRET-assisted RNA prediction method to predict the 2D and 3D structures of this pre-mRNA. To achieve this, we initiate the process by generating RNA structural ensembles through coarse-grained molecular dynamics (MD) simulations. Subsequently, inter-dye distances are calculated for these RNA structural ensembles by performing all-atom MD simulations of the dye groups. The ultimate determination of the 2D and 3D structures for the pre-mRNA is achieved by comparing the calculated inter-dye distances with experimental counterparts. Notably, our computational results demonstrate a significant alignment with experimental findings, which involve a conformational change at the 2D level.
Read full abstract