AISI 316L austenitic stainless steel is utilized in various processing industries, due to its abrasion resistance, corrosion resistance, and excellent properties over a wide temperature range. The physical and mechanical properties of a material change during the manufacturing process and plastic deformation, e.g., bending. During the combined tensile and bending loading of a structural component, the stress state changes due to the residual stresses and the loading range. To characterize the component’s stress state, the billet was bent to induce residual stress, but a phase transformation to martensite also occurred. The bent billet was subjected to combined tensile–bending and fatigue loading. The experimentally measured the load vs. displacement of the bent billet was compared with the numerical simulations. The results showed that during fatigue loading of the bent billet, both the initial stress state at the critical point and the stress state during the dynamic loading itself must be considered. Analysis was demonstrated only for one single critical point on the surface of the bent billet. The residual stresses due to the phase transformation of austenite to martensite affected the range and ratio of stress. The model for the stress–strain behaviour of the material was established by comparing the experimentally and numerically obtained load vs. displacement curves. Based on the description of the stress–strain behaviour of the pre-deformed material, guidelines have been provided for reducing residual tensile stresses in pre-deformed structural components.
Read full abstract