We address the Prandtl equations and a physically meaningful extension known as hyperbolic Prandtl equations. For the extension, we show that the linearised model around a non-monotonic shear flow is ill-posed in any Sobolev spaces. Indeed, shortly in time, we generate solutions that experience a dispersion relation of order k3\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\root 3 \\of {k}$$\\end{document} in the frequencies of the tangential direction, akin the pioneering result of Gérard-Varet, D., Dormy, E.: On the ill-posedness of the Prandtl equation. J. Am. Math. Soc., 23(2), 591–609 (2010) for Prandtl (where the dispersion was of order k\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\sqrt{k}$$\\end{document}). We emphasise, however, that this growth rate does not imply (a-priori) ill-posedness in Gevrey-class m, with m>3\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$m>3$$\\end{document}. We relate these aspects to the original Prandtl equations in Gevrey-class m, with m>2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$m>2$$\\end{document}: We show that the result in Gérard-Varet, D., Dormy, E.: On the ill-posedness of the Prandtl equation. J. Am. Math. Soc., 23(2), 591–609 (2010) determines a dispersion relation of order k\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\sqrt{k}$$\\end{document} for a short time proportional to ln(k)/k\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\ln (\\sqrt{k})/\\sqrt{k}$$\\end{document}. Therefore, the ill-posedness in Gérard-Varet, D., Dormy, E.: On the ill-posedness of the Prandtl equation. J. Am. Math. Soc., 23(2), 591–609 (2010) in its generality is momentarily constrained to Sobolev spaces rather than extending to the Gevrey classes.