The straightforward synthesis of noble-metal-nanoparticle-decorated ordered mesoporous transition metal oxides remains a great challenge due to the difficulty of balancing the interactions between precursors and templates. Herein, a solvent-pair-enabled multicomponent coassembly (SPEMC) strategy is developed for straightforward synthesis of noble-metal-nanoparticle-decorated nitrogen-doped ordered mesoporous tungsten oxide (abbreviated as NM/N-mWO3, NM=Pt, Rh, Pd). The amphiphilic poly(ethylene oxide)-block-polystyrene (PEO-b-PS) copolymers coassemble with ammonium metatungstate (AMT) clusters and different kinds of hydrophilic noble metal precursors without phase separation. SPEMC synthesis requires no direct interaction between PEO-b-PS and AMT, thus the assembly equilibriums between noble metal precursors and PEO-b-PS can be readily controlled. The obtained NM/N-mWO3 nanocomposites possess ordered mesopores, abundant oxygen vacancies, and metal-metal oxide interfaces. As a result, the Pt/N-mWO3 sensors exhibit superior ammonia sensing performances with high sensitivity, an ultralow limit of detection (51.2 ppb), good selectivity, and long-term stability. Spectroscopic analysis reveals that ammonia is oxidized stepwise to NO, NO2 -, and NO3 - during the sensing process. Moreover, a portable wireless module based on Pt/N-mWO3 sensor can recognize ppm-level concentration of ammonia, which lays a solid foundation for its application in various fields.