Previously, we reported that glucagon-like peptide-1 (GLP-1) and its analog liraglutide could inhibit fat de novo synthesis in the liver and reduce abdominal fat accumulation in broiler chickens. Nevertheless, the impact of GLP-1 on adipocyte fat deposition remains enigmatic. This study aimed to investigate the effects of GLP-1, via its analog liraglutide, on chicken chicken adipocytes in vitro. Chemical assays, quantitative real-time polymerase chain reaction (qRT-PCR), and western blot were employed to assess the proliferation, differentiation, and fat deposition of chicken adipocytes. Our findings indicated that liraglutide significantly suppressed cell proliferation and promoted preadipocyte differentiation in comparison to the control group. This was evidenced by elevated triglyceride (TG) content and upregulated mRNA expression of lipogenesis-related enzymes, such as acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS), as well as regulators including peroxisome proliferator-activated receptor γ (PPARγ), sterol regulatory element binding protein-1 (SREBP1) and CCAAT/enhancer binding protein α (CEBPα). In mature adipocytes, liraglutide attenuated fat deposition by inhibiting fat de novo synthesis, evidenced by decreased mRNA expression of ACC, FAS, PPARγ, C/EBPα, and SREBP1, and concurrent upregulation of phosphorylated AMP-activated protein kinase (p-AMPK) and phosphorylated ACC (p-ACC). This resulted in reduced accumulation of lipid droplets and TG content in mature adipocytes. Collectively, our findings indicate that liraglutide suppresses the proliferation of preadipocytes, enhances their differentiation, and concurrently inhibits de novo lipogenesis in mature adipocytes. This observation offers profound insights into the mechanisms that underlie liraglutide's anti-adipogenic effects, which could have significant implications for the treatment of obesity in broiler chickens.