Globally, effective and efficient healthcare is critical to the wellbeing and standard of living of any society. Unfortunately, several distant communities far from the national grid do not have access to reliable power supply, owing to economic, environmental, and technical challenges. Furthermore, unreliable, unavailable, and uneconomical power supply to these communities contributes significantly to the delivery of substandard or absence of qualitative healthcare services, resulting in higher mortality rates and associated difficulty in attracting qualified healthcare workers to the affected communities. Given these circumstances, this paper aims to conduct a comprehensive review of the status of renewable energy available to rural healthcare clinics around the globe, emphasizing its potential, analysis, procedures, modeling techniques, and case studies. In this light, several renewable energy modeling techniques were reviewed to examine the optimum power supply to the referenced healthcare centers in remote communities. To this end, analytical techniques and standard indices for reliable power supply to the isolated healthcare centers are suggested. Specifically, different battery storage systems that are suitable for rural healthcare systems are examined, and the most economical and realistic procedure for the maintenance of microgrid power systems for sustainable healthcare delivery is defined. Finally, this paper will serve as a valuable resource for policymakers, researchers, and experts in rural power supply to remote healthcare centers globally.