This study investigates the power losses of rolling element bearings (REBs) lubricated using an oil bath. Experimental tests conducted on two different deep-groove ball bearings (DGBBs) provide valuable insights into the behaviour of DGBBs under different oil levels, generating essential data for developing accurate models of power losses. Observations of the oil bath dynamics reveal the formation of an oil ring at high oil levels, as observed for planetary gear trains, leading to modifications in the oil flow behaviour. The experiments demonstrate that oil bath lubrication generates power losses comparable to injection lubrication when the oil level is low. However, as the oil level increases, so do the power losses due to increased drag within the bearing. This study presents a comprehensive model for calculating drag losses. The proposed drag power loss model accounts for variations in oil level and significantly improves loss predictions. A comparison of existing models with the experimental results shows good agreement for both bearings, demonstrating the effectiveness of the developed model in accounting for oil bath height in loss calculations.
Read full abstract