Against the background of the construction of new power systems, power generation, transmission, distribution, and dispatching services are open to the outside world for interaction, and the accessibility of attack paths has been significantly enhanced. We are facing cyber-physical cross-domain attacks with the characteristics of strong targeting, high concealment, and cross-space threats. This paper proposes a quantitative analysis method for the influence of power cyber-physical cross-domain attack paths based on graph knowledge. First, a layered attack graph was constructed based on the cross-space and strong coupling characteristics of the power cyber-physical system business and the vertical architecture of network security protection focusing on border protection. The attack graph included cyber-physical cross-domain attacks, control master stations, measurement and control equipment failures, transient stable node disturbances, and other vertices, and achieved a comprehensive depiction of the attack path. Second, the out-degree, in-degree, vertex betweenness, etc., of each vertex in the attack graph were comprehensively considered to calculate the vertex vulnerability, and by defining the cyber-physical coupling degree and edge weights, the risk of each attack path was analyzed in detail. Finally, the IEEE RTS79 and RTS96 node systems were selected, and the impact of risk conduction on the cascading failures of the physical space system under typical attack paths was analyzed using examples, verifying the effectiveness of the proposed method.
Read full abstract