A lattice Wess-Zumino model is formulated on the basis of Ginsparg-Wilson fermions. In perturbation theory, our formulation is equivalent to the formulation by Fujikawa and Ishibashi and by Fujikawa. Our formulation is, however, free from a singular nature of the latter formulation due to an additional auxiliary chiral supermultiplet on a lattice. The model posssesses an exact U(1)R symmetry as a supersymmetric counterpart of the L?scher lattice chiral U(1) symmetry. A restration of the supersymmetric Ward-Takahashi identity in the continuum limit is analyzed in renormalized perturbation theory. In the one-loop level, a supersymmetric continuum limit is ensured by suitably adjusting a coefficient of a single local term *. The non-renormalization theorem holds to this order of perturbation theory. In higher orders, on the other hand, coefficents of local terms with dimension ? 4 that are consistent with the U(1)R symmetry have to be adjusted for a supersymmetric continuum limit. The origin of this complexicity in higher-order loops is clarified on the basis of the Reisz power counting theorem. Therefore, from a view point of supersymmetry, the present formulation is not quite better than a lattice Wess-Zumino model formulated by using Wilson fermions, although a number of coefficients which require adjustment is much less due to the exact U(1)R symmetry. We also comment on an exact non-linear fermionic symmetry which corresponds to the one studied by Bonini and Feo; an existence of this exact symmetry itself does not imply a restoration of supersymmetry in the continuum limit without any adjustment of parameters.