This study utilized the WRF model to investigate the track evolution and rapid intensification (RI) of Typhoon Doksuri (2023) as it moved across the Luzon Strait and through the South China Sea (SCS). The simulation results indicate that Doksuri has a smaller track sensitivity to the use of different physics schemes, while having a greater intensity sensitivity. Sensitivity numerical experiments with different physics schemes can well capture its northwestward movement in the first two days, but they predict less westward track deflection as the typhoon moves across the Luzon Strait and through the SCS. Moreover, all the experiments successfully simulated Doksuri’s RI, albeit with quite different rates and a time lag of 12 h. Among different combinations of physics schemes, there exists an optimal set of cumulus parameterization and cloud microphysics schemes for track and intensity predictions. Doksuri’s track changes as the typhoon moved across the Luzon Strait and through the SCS were influenced by the topographic effects of the terrain of the Philippines and Taiwan, to different extents. The track changes of Doksuri are explained by the wavenumber-one potential vorticity (PV) tendency budget from different physical processes, highlighting that the horizontal PV advection dominates the PV tendency throughout most of the simulation time due to the offset of vertical PV advection and differential diabatic heating. In addition, this study applies the extended Sawyer–Eliassen (SE) equation to compare the transverse circulations of the typhoon induced by various forcing sources. The SE solution indicates that radial inflow was largely driven in the lower-tropospheric vortex by strong diabatic heating, while being significantly enhanced in the lower boundary layer due to turbulent friction. All other physical forcing terms were relatively insignificant for the induced transverse circulation. The coordinated radial inflow at low levels may have led to the eyewall development in unbalanced dynamics. Intense diabatic heating thus was vital to the severe RI of Doksuri under a weak vertical wind shear.
Read full abstract