Plant biomass allocation is mainly affected by the environment where each individual grows. In this sense, through the rapid global expansion of impermeable areas, urbanization has strong, albeit poorly understood, consequences on the biomass allocation of plants found in this environment. Nevertheless, the comprehension of biomass allocation processes in urban shrubs remains unclear, because most studies of urban ecology focus on tree species. This is an important gap of knowledge because a great part of urban vegetation is composed of shrubs and their association with trees have positive impacts in urban ecosystem services. In this study, we explored the ecological and potential selective pressure effects of an urbanization gradient on the biomass allocation patterns of aboveground organs of Turnera subulata, a widely distributed tropical shrub. We have demonstrated that, for certain reproductive organs, biomass allocation decreases in locations with higher urbanization. Unlike expected, the biomass of vegetative organs was not affected by urbanization, and we did not observe any effect of urbanization intensity on the variance in biomass allocation to vegetative and reproductive organs. We did not record urbanization-mediated trade-offs in biomass allocation for reproductive and vegetative organs. Instead, the biomass of these structures showed a positive relationship. Our data suggest that urbanization does not result in radical changes in biomass allocation of T. subulata, and neither in the variation of these traits. They indicate that the ability of T. subulata to thrive in urban environments may be associated with life history and morphological mechanisms. Our findings contribute to the understanding of shrub plant responses to urbanization and highlight urbanization as a potential factor in resource allocation differences for different structures and functions in plants living in these environments.