Sulfur metabolites of methionine (Met) and vitamin E (VE) have antioxidant potential and can maintain liver health in chickens. This study explored the underlying mechanisms of Met sources, the ratio of total sulfur amino acids to lysine (TSAA: Lys), and VE levels on production performances, antioxidant potential, and hepatic oxidation in aged laying hens. Eight hundred and sixty-four, Hy-Line Brown laying hens (70-week age) were divided into 12 treatment groups, each having 6 repeats and 12 birds/each repeat. The dietary treatments consisted of DL-Met (DL-Met), DL-2-hydroxy-4-(methylthio)-butanoic acid (OH-Met), 3 ratios of TSAA: Lys (0.90, 0.95, and 1.00), and 2 levels of VE (20 and 40 g/ton). Albumen height and Haugh unit significantly increased at a lower level of VE (P < 0.05). Triglycerides (TG), total cholesterol (TC), low-density lipoprotein (LDL), and very low-density lipoprotein (VLDL) in serum and superoxide dismutase (SOD) and catalase activities (CAT) in the liver significantly reduced at 0.95 TSAA: Lys ratio (P < 0.05). Fatty acid synthase (FAS), lipoprotein lipase (LPL), nuclear factor erythroid 2-related factor 2 (Nrf2), and carnitine palmitoyltransferase-1 alpha (CPT-1α) also upregulated at this TSAA: Lys ratio (P < 0.05). Compared with the DL-Met group, the OH-Met group had lower Dipeptidyl Peptidase 4 (DPP4) and higher TC, LDL, and VLDL concentrations (P < 0.05).The expression of FAS,CPT-1α), glutathione (GSH), glutathione disulfide (GSSG), glutathione synthetase (GSS), and Nrf2 were significantly higher in OH-Met compared with the DL-Met group (P < 0.05). OH-Met at 0.95 and DL-Met at 0.90 TSAA: Lys ratio showed higher CAT and lower aspartate aminotransferase (AST) activities. Moreover, OH-Met at 0.90 and DL-Met at 0.95 of the TSAA: Lys ratio had a significant reduction of malondialdehyde (MDA) (P < 0.05). Overall, these results suggest that OH-Met source with a lower level of VE positively influenced production performance and improved liver health in aged laying hens through improved lipid metabolism and hepatic antioxidant function.
Read full abstract