(C6N2H14) NH4 (ClO4)3 (DAP-4) have attracted an increasing focus recently as an ammoniumperchlorate-based molecular perovskite energetic material with outstanding features. Microscopy, variable temperature X-ray diffraction, in situ infrared spectroscopy, differential scanning calorimetry-thermogravimetry simultaneous thermal analysis coupled with infrared spectroscopy and mass spectrometry (DSC-TG/FTIR/MS) techniques were used to systematically investigate DAP-4 thermal properties from -40 °C to 550 °C. The results revealed that DAP-4 have two solid-solid crystallization phase transitions with a non-characteristic melting process. The generated activation energies of HCN, CO, CH2NH2, CO2 and NO2 gas products are all lower than the macroscopic decomposition's of DAP-4. This finding strongly proves that DAP-4 is easy to form these gas products during thermal stimulus. The two stages decomposition mechanism accompanying a large of CH2NH2 and NH2C2H4 gases and kinetic model of DAP-4 were proposed under the condition of high-purity argon gas. This study provides new insight into the in-depth and accurate description thermal decomposition mechanism of DAP-4 as a potential energetic material.