BackgroundHeart failure (HF) and cancer share common risk factors and pathophysiological mechanisms, including fibrosis. Identifying biomarkers and therapeutic targets for both conditions is crucial.Materials and methodsRNA sequencing data from HF patients were analyzed to identify 12 genes associated with myocardial fibrosis. Validation was performed using public datasets, and functional enrichment analyses were conducted. Gene expression patterns and prognostic value in various cancers were assessed.ResultsFibromodulin (FMOD), Periostin (POSTN), Latent Transforming Growth Factor Beta Binding Protein 2 (LTBP2), Collagen Type I Alpha 1 Chain (COL1A1), Collagen Type VIII Alpha 1 Chain (COL8A1), Asporin (ASPN), and Hemoglobin Subunit Beta (HBB) showed significant dysregulation in heart failure tissues and were implicated in multiple cancer types. Pan-cancer analysis revealed associations between these genes and prognosis. Correlations with cancer-associated fibroblasts were also observed.ConclusionFMOD, POSTN, LTBP2, COL1A1, COL8A1, ASPN, and HBB are potential biomarkers for HF and cancer with fibrotic microenvironments. Targeting fibrosis may offer novel therapeutic approaches. Further validation and mechanistic studies are needed. This study contributes to understanding HF and cancer at the molecular level and suggests personalized treatment strategies.
Read full abstract