High-intensity focused ultrasound (HIFU) is considered as an important non-invasive way for tumor ablation in deep organs. However, accurate real-time monitoring of the temperature field within HIFU focal area remains a challenge. Although ultrasound technology, compared with other approaches, is a good choice for noninvasive and real-time monitoring on the temperature distribution, traditional ultrasonic thermometry mainly relies on the backscattered signal, which is difficult for high temperature (>50 °C) measurement. Given that artificial intelligence (AI) shows significant potential for biomedical applications, we propose an AI-powered ultrasonic thermometry using an end-to-end deep neural network termed Breath-guided Multimodal Teacher-Student (BMTS), which possesses the capability to elucidate the interaction between HIFU and complex heterogeneous biological media. It has been demonstrated experimentally that two-dimension temperature distribution within HIFU focal area in deep organ can be accurately reconstructed with an average error and a frame speed of 0.8 °C and 0.37 s, respectively. Most importantly, the maximum measurable temperature for ultrasonic technology has been successfully expanded to a record value of 67 °C. This breakthrough indicates that the development of AI-powered ultrasonic thermometry is beneficial for precise HIFU therapy planning in the future.
Read full abstract