The neurofibrillary tangles (NFTs) formed from hyperphosphorylation of tau protein are closely associated with Alzheimer's disease (AD). O-GlcNAcylation of tau can negatively regulate hyperphosphorylation and the O-GlcNAcase (OGA) catalyzes the removal of O-linked β-N-acetylglucosamine (O-GlcNAc) from tau protein. Therefore, preventing tau hyperphosphorylation by increasing the levels of tau O-GlcNAcylation via OGA inhibitors could be a promising approach. Based on Thiamet-G, a potent OGA inhibitor, and its binding mode to OGA, a novel OGA inhibitor scaffold bearing three parts was designed and hit compound 7j was successfully identified via extensive exploring. Further chemical optimization and diversification of the 7j structure resulted in compound 39 which possesses excellent OGA inhibition, no cytotoxicity, and has good pharmacokinetic properties. In acute AD model mice, 39 was more effective than Thiamet-G in inhibiting OGA activity attributable to its better blood-brain barrier permeability. In addition, 39 restored the cognitive function in mice and reduced amyloid-β (Aβ) concentrations to a greater extent than Thiamet-G. Molecular docking studies demonstrated that 39 was well associated with OGA through H-bonds and hydrophobic interaction. Together, these findings suggest that 39 was promising as a potent OGA inhibitor in the treatment of AD.
Read full abstract